May, 2016

Swallowing Issues

Posted in Uncategorized on May 23rd, 2016 with No Comments
Difficulty swallowing (sometimes referred to as dysphagia) is a common problem among all age groups, especially the elderly. Typical complaints of dysphagia include food getting stuck in the throat, inability to swallow pills, and/or regurgitation. Often patients will choke on bits of food, liquid, or saliva that are not passing easily. In more extreme cases, patients may aspirate foods or liquids that will spill into the lungs, causing pneumonia at times. The process of swallowing is very complex and requires several structures to function properly in a coordinated fashion. Swallowing is broken down into three separate phases; the oral phase, the pharyngeal phase, and the esophageal phase. During the oral phase, food is chewed up, mixed with saliva, and voluntarily pushed towards the back of the throat (oropharynx). This initiates the pharyngeal phase which represents the food being passed from the throat (pharynx) to the esophagus (the food tube leading to the stomach). In the final phase, the food or liquid is carried down to the stomach. Swallowing issues can structural, functional, or both. The most common structural issue is inflammation of the throat and esophagus. Inflammation can be caused acid reflux (GERD), radiation exposure (as with cancer treatments), allergies (eosinophilic esophagitis), or swallowing medications without enough fluid to wash them down properly. Other structural issues might include esophageal stricture (narrowing of the esophagus), anatomical abnormalities (such as a paralyzed vocal cord), or head and neck cancerous lesions. Functional issues are caused by inability to use the swallowing muscles appropriately, and may be caused by advanced age (presbyesophagus), stroke, and other neurological or systemic conditions. Although swallowing issues rarely indicate a serious medical condition, a thorough upper airway examination is recommended to rule out worrisome findings or treatable causes. This can be accomplished by seeing an Otolaryngologist (also known as an Ear, Nose, and Throat physician), who can perform a quick and painless in-office procedure known as a laryngoscopy. The laryngoscopy, which is performed after spraying lidocaine in the nose and mouth, allows the physicians to evaluate vital structures including the vocal cords, epiglottis, and pyriform sinuses (opening into the esophagus), which may be contributing to the swallowing issues. Sometimes additional testing and evaluation may be required. One common test is called the barium swallow study, in which X-ray images are taken while a patient drinks a liquid known as barium. At times CT or MRI imaging can be obtained if there is concern about more worrisome findings. When the swallowing does not appear to involve the upper aerodigestive tract (larynx and pharynx), the patient may be referred to follow up with another specialist known as a Gastroenterologist (GI), who may perform an esophagoscopy to directly look at the esophagus. This test is usually done under anesthesia. Treatment options for dysphagia tend to vary. For individuals who frequently choke on foods or liquids, slowing down the swallowing process can be helpful. Patients should chew foods slowly, sit up straight when swallowing, and stay upright 15-20 minutes after eating. Better management of acid reflux can also be helpful. This can be accomplished by avoiding spicy and acidic foods and taking medications such as omeprazole or ranitidine. Sometimes treating allergy disorders can be helpful. Many swallowing disorders can also be improved by the assistance of a speech and swallow pathologist who can initiate “swallow therapy”, which is like physical therapy for dysphagia. Speech pathologists can provide specialized exercises which can help strengthen the swallow reflex. At times structural diseases that are identified may be treated with surgery. Opinions expressed here are those of our medical writers. They are not intended as medical advice and cannot substitute for the advice of your personal physician.

Thyroid Nodules – What you need to know

Posted in Uncategorized on May 16th, 2016 with No Comments
The thyroid gland is a small organ located at the front of the neck right below the larynx (Adam’s apple). The gland is shaped like a butterfly with two separate lobes and wraps itself around the trachea (windpipe). As a component of the endocrine system, the thyroid is responsible for releasing hormones (T3, T4, and calcitonin) into the bloodstream which help regulate metabolism, heart rate, body temperature, and blood calcium levels. On many occasions, abnormal growths or lumps can develop on the thyroid gland. These are called thyroid nodules. Thyroid nodules can be solid or fluid filled. They can be found isolated or grouped with other nodules. Under most circumstances, thyroid nodules do not cause symptoms and go unnoticed to the patient. In rare cases, a nodule will become excessively large, and symptoms will develop, including difficulty swallowing, hoarseness, neck pain, or enlargement of the neck. Thyroid nodules are often found incidentally during routine examination or on imaging studies (MRI, CT, US) that are obtained for unrelated reasons, but these nodules will still need to be evaluated to ensure that they will not cause any problems. An abnormal thyroid function test may also indicate whether a nodule is present. Thyroid function tests measure the blood levels of T3, T4, and thyroid stimulating hormone (TSH). It is also important to know whether the thyroid hormone levels are normal, or higher or lower than expected, which can affect body function. Although most thyroid nodules are consistent with benign disease (>90%), additional evaluation is important to ensure that that there is not anything more worrisome occurring. The first step in evaluation after physical examination is obtaining a neck/thyroid ultrasound, which gives accurate measurements of the size, shape and other important characteristics of the thyroid gland and any nodules that may be present. An ultrasound is a quick painless procedure that will give detailed information about the presence, number, size, and location of any thyroid nodules. Depending on the results, additional evaluation may be necessary. For nodules that are consider large (typically greater than 1-1.5 centimeter), a specialized biopsy technique called a fine needle aspirate (FNA) is often recommended to rule out worrisome findings. In many cases, an FNA is performed under ultrasound guidance, ensuring better accuracy. FNA results will often demonstrate whether or not a nodule is benign (harmless) or malignant (cancerous). When FNA results are indeterminate (uncertain), additional assessment is often necessary. A new technique that has recently been used to better determine the chance of malignancy in this situation is a specialized “genetic test”, which can help us place patients in low or high risk categories when previously we were unable to make an assessment. In those patients with nodules that are cancerous or high risk, we would recommend surgical removal of part or all of the thyroid gland. Recent guidelines from the American Thyroid Association has shown that for some less aggressive thyroid cancers, removing only part of the thyroid gland may be appropriate, allow for quicker healing, less need for medications postoperatively, and afford similarly high cure rates. If you or a family member have any concern regarding head and neck symptoms, please do not hesitate to contact Colden Ear, Nose, Throat, and Allergy to schedule and examination.

Noise Induced Hearing Loss- What?????

Posted in Uncategorized on May 9th, 2016 with No Comments
Humans are exposed to all kinds of sounds on a daily basis; including cars, engines, televisions, or radios. Under most circumstances, these sounds are at safe levels and do not affect our hearing. However, when we are exposed to loud noises, sensitive structures inside the inner ear can be damaged. This condition is referred to as noise induced sensorineural hearing loss. Hearing is a complex mechanism which requires several structures to work together. The outer ear includes the pinna and external auditory canal. The pinna functions to collect sound waves and direct them into the auditory canal. Because of its unique structure, sounds are amplified as they travel towards the back of the auditory canal. The captured sound waves then reach the tympanic membrane (eardrum) at the back of the canal, causing it to vibrate back and forth. The eardrum represents the separating barrier between the outer and the middle ear. As the eardrum vibrates, three tiny bones behind it begin to shift with it. These tiny bones are considered the smallest in the body, and are called ossicles. The last tiny bone, commonly referred to as the stapes, then transfers the vibrating motion to the organ of hearing, the cochlea. It is inside the cochlea where tiny structures called “hair cells” convert the vibrating energy into an electrical signal. The signal travels to the brain where perception occurs. When noises are too loud, the tiny hair cells within the inner ear are damaged and eventually die. This results in decreased hearing. Noise induced hearing loss can be caused by a one-time exposure to an intense sound (such as a blast) or by continuous exposure to loud sounds over an extended period of time (working in a loud shop). Leisure activities can also put one at risk for noise induced hearing loss. This might include listening to MP3 players at high volumes or attending loud rock concerts. There are many other causes of hearing loss besides noise, and these causes include aging (presbycusis), genetics, disease (history of recurrent middle ear infections, viral inner ear infections, and Meniere’s disease), and trauma .The severity of hearing loss depends on all of these factors , which can co-exist and be additive. Individuals with a mild hearing loss might only experience difficulty hearing with background noises. Individuals with a severe hearing loss may experience difficulty during normal conversation, which can impact their personal and professional life significantly. Another common symptom of hearing loss is ringing or buzzing in the ear, which is referred to as tinnitus. Tinnitus will often come and go, and can be extremely bothersome to patients. Machines that create masking sounds (white noise) can be used to “cancel-out” the tinnitus in many cases. Noise induced hearing loss is the only type of hearing loss that can be completely prevented. The best way to do so is to avoid loud noises. If one cannot avoid excessive noise, hearing protection is recommended. Ear plugs or ear muffs are frequently used to help decrease loud noises. Proper assessment of hearing loss requires a hearing evaluation. If one suspects that their hearing has decreased it is important to see an otolaryngologist (Ears, Nose, and Throat physician) or licensed hearing professional who can perform a specialized hearing test. Depending on the results and exam, a patient may be a candidate for a hearing aid or other assistive listening devices. Other modalities include fabricating a custom ear plug that can minimize additional noise exposure if one is routinely exposed to loud noises at work or during hobbies (i.e. musicians). If a patient wishes to pursue hearing aids, a hearing aid evaluation is set up. During a hearing aid evaluation a trained audiologist or hearing instrument specialist will meet with the patient and help them find a hearing aid model which works best for them. If you have any questions about Noise Induced Hearing Loss or want to set up an evaluation with one of our Board Certified Ear Nose Throat specialists, or licensed audiologists or hearing instrument specialists, please contact us at Colden Ear Nose Throat and Allergy at 978-997-1550, or through our website.

What is the Eustachian tube dysfunction?

Posted in Uncategorized on May 2nd, 2016 with No Comments
Have your ears ever felt blocked while flying on an airplane, climbing up a mountain, or scuba diving underwater? This sensation is a common response of the Eustachian tube following changes in atmospheric pressure. The Eustachian tube is a narrow canal located deep inside of your ear behind the eardrum. The tube is about 3 to 4 centimeters long in adults and connects the middle ear space to the back of the nose (known as the nasopharynx). The primary function of the Eustachian tube is to equalize the pressure of the middle ear. Under normal circumstances, the tube is closed at rest and rapidly opens when yawning or swallowing. When the tube opens, it allows for an air exchange to occur between the middle ear and the back of the nose (where the pressure is close to the external environment). Blockage of the Eustachian tube, or inability to open, causes the middle ear space to become isolated from the exterior environment. This condition is called Eustachian tube dysfunction (ETD). When the tube fails to open, the lining of the middle ear may absorb the trapped air and create a negative pressure which pulls the eardrum inward. As a result, the patient may experience a blocked sensation, pain, pressure, or hearing loss. Long-term blockage of the Eustachian tube may result in the accumulation of fluid in the middle ear space. Younger children are more susceptible to middle ear fluid, ear infections, and Eustachian tube dysfunction because their eustachian tubes are shorter and more narrow, therefore causing decreased function. In addition, children often have enlarged adenoids in the back of the nose (nasopharynx), which can block the opening of the Eustachian tube and cause increased ear symptoms. Most children will eventually develop better eustachian tube function as they mature, but if eustachian tube dysfunction causes repeated ear infections, persistent ear fluid, or hearing loss related to ear fluid then certain types of surgical procedures can be considered, such as ear tube placement and/or removal of enlarged adenoids. Ear tube placement is shown to be a very safe and effective treatment for ear infections, ear fluid and hearing loss caused by eustachian tube dysfunction, and the ear tubes are designed to fall out on their own usually within 1 year. There are a variety of ways to test the function and patency of the Eustachian tube. This includes a pneumatic otoscope (a small device that visualizes the ear canal and blows air towards the eardrum), a tympanogram (a test to evaluate eardrum motility), and a specialized hearing test. Also, a quick and painless in-office procedure called a nasopharyngoscopy allows physicians to evaluate the nose, sinuses and nasopharynx to insure that there is no blockage of Eustachian tube opening, usually caused by enlarged adenoids or nasal polyps. Self-inflation of the ears is perhaps the easiest treatment for ETD. This can be accomplished by pinching the nose closed and “popping the ear”, also known as the Valsalva maneuver. ETD is often made worse by underlying allergies or sinus issues. Identification and treatment of allergic rhinitis and/or sinusitis may help reduce inflammation of the Eustachian tube and improve overall function. For patients with chronic ETD, treating underling sinus and allergy disease will often be helpful to reduce symptoms. For patients who will be flying and are prone to ETD, use of an oral decongestant (sudafed) or a nasal decongestant spray known as oxymetazoline (Afrin) should be considered in the short term. These medications are most effective if used during ascent and descent. Depending on severity of symptoms, some severe or chronic cases of ETD in adults may be treated by placement of an ear tube in the office setting, which can help equalize pressure in the middle ear. Daryl Colden, MD FACS and Christopher Jayne, BS Opinions expressed here are those of myself, Dr. Daryl Colden. They are not intended as medical advice and cannot substitute for the advice of your personal physician.