The thyroid gland is a small organ located at the front of the neck right below the larynx (Adam’s apple). The gland is shaped like a butterfly with two separate lobes and wraps itself around the trachea (windpipe). As a component of the endocrine system, the thyroid is responsible for releasing hormones (T3, T4, and calcitonin) into the bloodstream which help regulate metabolism, heart rate, body temperature, and blood calcium levels.
On many occasions, abnormal growths or lumps can develop on the thyroid gland. These are called thyroid nodules. Thyroid nodules can be solid or fluid filled. They can be found isolated or grouped with other nodules. Under most circumstances, thyroid nodules do not cause symptoms and go unnoticed to the patient. In rare cases, a nodule will become excessively large, and symptoms will develop, including difficulty swallowing, hoarseness, neck pain, or enlargement of the neck. Thyroid nodules are often found incidentally during routine examination or on imaging studies (MRI, CT, US) that are obtained for unrelated reasons, but these nodules will still need to be evaluated to ensure that they will not cause any problems. An abnormal thyroid function test may also indicate whether a nodule is present. Thyroid function tests measure the blood levels of T3, T4, and thyroid stimulating hormone (TSH). It is also important to know whether the thyroid hormone levels are normal, or higher or lower than expected, which can affect body function.
Although most thyroid nodules are consistent with benign disease (>90%), additional evaluation is important to ensure that that there is not anything more worrisome occurring. The first step in evaluation after physical examination is obtaining a neck/thyroid ultrasound, which gives accurate measurements of the size, shape and other important characteristics of the thyroid gland and any nodules that may be present. An ultrasound is a quick painless procedure that will give detailed information about the presence, number, size, and location of any thyroid nodules. Depending on the results, additional evaluation may be necessary. For nodules that are consider large (typically greater than 1-1.5 centimeter), a specialized biopsy technique called a fine needle aspirate (FNA) is often recommended to rule out worrisome findings. In many cases, an FNA is performed under ultrasound guidance, ensuring better accuracy. FNA results will often demonstrate whether or not a nodule is benign (harmless) or malignant (cancerous). When FNA results are indeterminate (uncertain), additional assessment is often necessary. A new technique that has recently been used to better determine the chance of malignancy in this situation is a specialized “genetic test”, which can help us place patients in low or high risk categories when previously we were unable to make an assessment. In those patients with nodules that are cancerous or high risk, we would recommend surgical removal of part or all of the thyroid gland.
Recent guidelines from the American Thyroid Association has shown that for some less aggressive thyroid cancers, removing only part of the thyroid gland may be appropriate, allow for quicker healing, less need for medications postoperatively, and afford similarly high cure rates.
If you or a family member have any concern regarding head and neck symptoms, please do not hesitate to contact Colden Ear, Nose, Throat, and Allergy to schedule and examination.
Humans are exposed to all kinds of sounds on a daily basis; including cars, engines, televisions, or radios. Under most circumstances, these sounds are at safe levels and do not affect our hearing. However, when we are exposed to loud noises, sensitive structures inside the inner ear can be damaged. This condition is referred to as noise induced sensorineural hearing loss.
Hearing is a complex mechanism which requires several structures to work together. The outer ear includes the pinna and external auditory canal. The pinna functions to collect sound waves and direct them into the auditory canal. Because of its unique structure, sounds are amplified as they travel towards the back of the auditory canal. The captured sound waves then reach the tympanic membrane (eardrum) at the back of the canal, causing it to vibrate back and forth. The eardrum represents the separating barrier between the outer and the middle ear. As the eardrum vibrates, three tiny bones behind it begin to shift with it. These tiny bones are considered the smallest in the body, and are called ossicles. The last tiny bone, commonly referred to as the stapes, then transfers the vibrating motion to the organ of hearing, the cochlea. It is inside the cochlea where tiny structures called “hair cells” convert the vibrating energy into an electrical signal. The signal travels to the brain where perception occurs.
When noises are too loud, the tiny hair cells within the inner ear are damaged and eventually die. This results in decreased hearing. Noise induced hearing loss can be caused by a one-time exposure to an intense sound (such as a blast) or by continuous exposure to loud sounds over an extended period of time (working in a loud shop). Leisure activities can also put one at risk for noise induced hearing loss. This might include listening to MP3 players at high volumes or attending loud rock concerts.
There are many other causes of hearing loss besides noise, and these causes include aging (presbycusis), genetics, disease (history of recurrent middle ear infections, viral inner ear infections, and Meniere’s disease), and trauma .The severity of hearing loss depends on all of these factors , which can co-exist and be additive. Individuals with a mild hearing loss might only experience difficulty hearing with background noises. Individuals with a severe hearing loss may experience difficulty during normal conversation, which can impact their personal and professional life significantly. Another common symptom of hearing loss is ringing or buzzing in the ear, which is referred to as tinnitus. Tinnitus will often come and go, and can be extremely bothersome to patients. Machines that create masking sounds (white noise) can be used to “cancel-out” the tinnitus in many cases.
Noise induced hearing loss is the only type of hearing loss that can be completely prevented. The best way to do so is to avoid loud noises. If one cannot avoid excessive noise, hearing protection is recommended. Ear plugs or ear muffs are frequently used to help decrease loud noises.
Proper assessment of hearing loss requires a hearing evaluation. If one suspects that their hearing has decreased it is important to see an otolaryngologist (Ears, Nose, and Throat physician) or licensed hearing professional who can perform a specialized hearing test. Depending on the results and exam, a patient may be a candidate for a hearing aid or other assistive listening devices. Other modalities include fabricating a custom ear plug that can minimize additional noise exposure if one is routinely exposed to loud noises at work or during hobbies (i.e. musicians). If a patient wishes to pursue hearing aids, a hearing aid evaluation is set up. During a hearing aid evaluation a trained audiologist or hearing instrument specialist will meet with the patient and help them find a hearing aid model which works best for them.
If you have any questions about Noise Induced Hearing Loss or want to set up an evaluation with one of our Board Certified Ear Nose Throat specialists, or licensed audiologists or hearing instrument specialists, please contact us at Colden Ear Nose Throat and Allergy at 978-997-1550, or through our website.